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I. INTRODUCTION

This document contains a summary of the work accomplished under Grant

AFOSR 83-0166 during the time period 18 May 1985 through June 30, 1986.

Section II contains a summary of the work accomplished to date under the current

year of funding. This summary is supplemented by appendices.

Section HI is devoted to various administrative matters pertinent to the grant.

II. WORK ACCOMPLISHED

(a) Optical Interconnections

Optical interconnections has been an area of investigation under AFOSR support
for several years. The powerful interconnect abilities of optical beams have led many
to believe that one of the most important roles for optics in computing in the future

will be as an interconnect technology.

The focus of our efforts in this area has been on the use of holographic optical
elements for providing such interconnects. During the past contract year our accom-
plishments have been two-fold: (1) An analytic comparison of optical and electronic
interconnects in the problem of chip-to-chip communication (published in Applied
Optics, with a reprint attached as Appendix A to this report); »nd (2) A very detailed
investigation of holographic optical elements and their capabilities in the role of inter-
connect elements (results presented at the 1985 Annual Meeting of the OSA, and in

more detail as an invited paper at the OSA Topical Meeting on Holography, April
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1986). Since the results obtained in the first of these two areas are found in the

appendix, we discuss in more detail only the second area above.

Of particular interest in the interconnect problem is the diffraction efficiency that
can be achieved with a holographic optical interconnect element, as well as the ability
of that element to efficiently concentrate light onto a small-area photodetector. We
have developed a ray-trace program that accounts not only for the density of rays in
the image space (as do most conventional ray-trace programs) but also the diffraction
efficiency associated with each of the rays, thus enabling us to obtain image irradiance
profiles at the detector plane. The predictions of this program have been extensively
ve..fied experimentally using bleached silver halide emulsions. The approach is
sufficiently general that the effects of fan-out on diffraction efficiency can be included,
an important issue in interconnect problems. The holograms studied are generally
reflection elements with focusing power. The diffraction efficiency associated with
each ray is determined from coupled mode theory, using another program developed

expressly for that purpose.

One Ph.D. student will be completing his degree this July in this area. A major

publication on this material has been submitted recently to Applied Optics.

During the year we have also been devoting attention to more fundamental
aspects of optical interconnections, especially the issues of fan-in and fan-out. A paper
has been published by Optica Acta on this subject and is attached as Appendix B. In
addition, an extensive survey paper on optical interconnections has been under prepara-
tion and will soon be submitted. However, much remains to be done of a fundamental

nature in understanding the proper place for optical interconnects in a hierarchy of
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interconnect technologies.

(b) Defect Enhancement using Four-Wave Mixing.

During the past contract year we have fully developed and brought to a conclu-
sion our ideas on the use of four-wave mixing or phase conjugation as a means for
enhancing defects in periodic structures. Such defect enhancement is needed in the
testing of integrated circuit photomasks, as well as in other inspection problems

involving periodic structures.

Our early work was devoted to the problem of intensity inversion using an
inherent nonlinear property of the phase-conjugation process in photorefractives. This
work was published in Applied Optics (Vol. 24, pp.1826-1832, 1985). Following this
work, we applied the method to defect detection in periodic structures, with the results

being published in Oprics Letters (see Appendix C for a reprint).

A Ph.D. candidate finished her work on this topic in the Summer of 1985 and is
now employed in industry. A patent application has been filed on the method. No

further work in this area is planned, since it is ready for commercialization.

(c) Optimal Imaging Concentrators

During the past three years we have used a small part of our AFOSR funds to
support supervision time of a U.S. Air Force Captain at Stanford in a Ph.D. program.
This individual has now completed his Ph.D. thesis in the area of optimal imaging
concentrators, i.e. imaging system configurations that will maximally deliver light (of

an arbitrary state of partial coherence) to a prescribed detector array of arbitrary




-5-

geometrical configuration. The research is highly theoretical in nature, but has direct
applications to both optical interconnections and to high-energy lasers. The early
results of the work were reported at the 1985 Annual Meeting of the Optical Society
of America. At about the same time a full-length technical paper was submitted to
JOSA-A for the special issue on Coherence and Statistical Optics. We expect this paper
to be published within the next month or two. The Ph.D. student working in this area

will be completing his final requirements this summer.

(d) Neural Networks and Optical Computing

During the past contract year we have undertaken research in a new area that we
feel is very exciting and promising, namely the application of neural network ideas to
problems of optical computing. There is a multitude of researchers who are currently
looking at such networks as a possible means for realizing associative or content-
addressable memories. In view of the substantial efforts in this area elsewhere, we

have chosen instead to focus on the application of such ideas to computing.

For six months during 1985 we were fortunate to have as a visitor with our group
Prof. Mitsuo Takeda from the University of Electro-communications, in Tokyo. Under
our encouragement, Dr. Takeda began an investigation in this area in collaboration
with us, and results that we feel are very significant were obtained. To summarize in a
few words, we investigated the application of the Hopfield neural network model to

the following computational problems:

1. The "Hitchcock” problem, which is a transportation probiem or a resource alloca-

tion problem.




-6-

2. Matrix inversion and image deblurring problems.
3. Signal processing problems, including spectral analysis.

The results of these investigations revealed some interesting points that require
further investigation:

1. For most (but not all) problems, the most direct solution was one that mixed the
"program” and the "data" in a single interconnect pattern.

2. For many (but not all) problems, the computational load associated with determi-
nation of the required interconnect pattern is comparable with the computational
load associated with direct solution of the problem.

3. For most problems, constraints must be properly weighted with respect to the
energy function to be minimized, requiring rather ad hoc and empirical choices.
In view of the importance we place on this work, both with respect to work

accomplished and work proposed, we are attaching a preprint of the paper to this

report as Appendix D (in spite of its bulk). This work has been accepted for publica-
tion in the Applied Optics special issue on number representations in optical comput-

ing.

II1. ADMINISTRATIVE MATTERS
This section contains miscellaneous information pertinent tu the grant.

Publications on work fully or partially supported by this grant and accepted or

published during the last contract year are as follows:
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E. Ochoa, L. Hesselink, J. W. Goodman, "Real-time intensity inversion using
two-wave and four-wave mixing in photorefractive Bi12Ge020", APPLIED

OPTICS, Vol. 24, pp.1826-1832 (1985).

R.K. Kostuk, JW. Goodman, L. Hesselink, "Optical imaging applied to
microelectronic chip-to-chip interconnections”, APPLIED OPTICS, Vol. 24, No.

17, pp 2851-2858 (1985).

E. Ochoa, 1.W. Goodman, L. Hesselink, "Real-time enhancement of defects in a
periodic mask using photorefractive B12Si012", OPTICS LETTERS, Vol.10, pp.

430-432 (1985).

J.W. Goodman, "Fan-in and Fan-out with optical interconnections”, OPTICA

ACTA, Vol. 32, No. 12, 1489-1496 (1985).

J.W. Goodman, R.K. Kostuk, and B. Clymer, "Opiical interconnects: an over-
view", Proceedings of the IEEE Conference on Multilevel Interconnects for VLSI,

Santa Clara, California, June 1985, pp. 219-224.

J.W. Goodman, "A random walk through the field of speckle”, Optical Engineer-
ing, May 1986.

Papers under submission include:

P. Idell and J.W. Goodman, "Design of optimal imaging concentrators for par-

tially coherent sources:absolute encircled energy criterion”, Accepted for publica-

tion in JOSA-A.

M. Takeda and J.W. Goodman, "Neural networks and computing: number
representations and programming complexity”, Accepted for publication in

APPLIED OPTICS.
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Thice contributed papers were presented at the 1985 Annual meeting of the OSA.
An invited paper was presented at the Workshop on Optical Interconnects sponsored
by MCC in Austin Texas in November 1985. An plenary paper was presented at
LASER 85 in Los Vegas, Nevada in December 1985. An invited paper entitled
"Holographic optical elements for optical interconnects" was presented at the OSA
Topical Meeting on Holography, Honolulu, Hawaii, April 1986. An invited paper enti-
tled "Optical interconnects”" was presented at the NoF Workshop on Lightwave Tech-
nology, Tucson, AZ, May 1986. An invited paper entitled "Optical interconnections
and computing” was presented at the US-Japan Workshop on Optoelectronics, Tokyo,

Japan, May 1986.
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Optical imaging applied to microelectronic chip-to-chip

interconnections

Raymond K. Kostuk, Joseph W. Goodman, and Lambertus Hesselink

An imaging svstem is proposed as an alternative to metallized connections between integrated circuits.
Power requirements for metallized interconnects and electrooptic links are compared. A holographic opti-
cal element is considered as the imaging device. Several experimental svstems have been constructed which
have visible LED> as the transmitters and PIN photodiodes as the receivers. Signals are evaluated at differ-
ent source—detector separations. Multiple exposure holograms are used as a means of optical fan out allow-
ing vne source to simultaneously address several receiver locations. Limitations of this technique are also

discussed.

I. Introduction

A limitation of increasing importance in VLSI elec-
tronic integrated circuit design is the interconnections
between devices and systems. Restrictions of con-
ventional interconnects arise from (a) increased space
allocated to wiring, (b) propagation delays with in-
creased line lengths and RC time constants, {¢) induc-
tive noise between lines, (d) dominance of line capaci-
tance over other sources of capacitance as line lengths
increase, and (e) degrading electromigration effects on
wiring materials.! * Since different optical signals can
propagate through the same spatial volume without
interference, the possibility of using optical methods to
alleviate this space restriction is attractive.*% In this
paper we discuss a humber of aspects of optical imaging
which are applicable to the electronic interconnect
problem and evaluate an experimental system.

.  Comparison of Optical and Electronic
Interconnections

Figure 1 shows a typical VLSI microelectronic circuit
mounted and bonded to a package which can be con-
nected to other electronic systems. There are several
thousand gates on this circuit and several hundred
output pins which allow communication to other sys-
tems. Two levels of interconnection can be identified:

The authors are with Stanford University, Electrical Engineering
Department, Stanford, California 94305,

Received 26 February 1985.

0D03.6935/85/172851 -08$02.00/0.

< 1985 Optical Society of America.

One connects two or more devices on a common chip,
and another connects an integrated system or chip to
another chip.

There are a number of ways to compare the perfor-
mance and capability of different tvpes of intercon-
nection.!* Consider one such criterion, the reactive
power required of one electronic inverter to trigger an-
other inverter. Reactive power is given by

pP= a . (1}

27

where C is the capacitance of the line and attached de-
vices, V is the device threshold level (assumed 1 V), and
7 is the clocking period (assumed 1 nsec).

Figure 2 illustrates gate-to-gate connection.” The
gate capacitance of two devices and the metal line
connecting them .aust be charged to the threshold po-
tential for the gate. The gate capacitance is given by

Cp = (@)
where ¢, = 3.9 for Si0., ¢, = 8.854 X 1071 F/cm, A is the
device area, and d is the oxide thickness laver. Pro-
jected VLSI device lengths and oxide laver thickness are
0.5 and 0.02 um, respectively. This gives a gate ca-
pacitance of C, = 50 fF/device. The capacitance of the
line joining two devices is

i w
Cr=¢¢, — 1.
h

where ! is the line length and « the linewidth. The
width/height ratio is restricted by fringing field effects
to a minimum value of ~2. For a typical VLSI circuit
the average length is ~1 mm long. This gives a line
capacitance of (; = 70 fF. The total capacitance of this
link is then C, = 2C, + (', = 170 {F, and the corre-
sponding reactive power °, = 85 uW.

1 September 1985 / Vol. 24, No. 17 / APPLIED OPTICS 2851
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Fiz 1. VLS areuit tmanufactured by Honevwell) with ~3000 gates
and 170 bonding pads. Interconnections exist between gates on a
commen substrate and trom bonding pads to other cireuits and out-

side svstems.

Fig. 2. Schematic of gate-to-gate connection for two inverters. The

line hetween gates is modeled as a single capacitor.

Figure 3 shows a chip-to-chip connection. To mini-
mize propagation delays, gate capacitances are gradu-
ally increased in size until the device capacitance is
comparable to that of a bonding pad.” A valtage pulse
from a logic element must have sufficient power to
charge these gates, two bonding pads. the line con-
necting them, and a receiving gate to the device
threshold level. ‘The total capacitance of this link is C,
=20 + ) + 20, where Cy is the bonding pad capac-
itance. For a pad area of ~100 pm~ and assuming a
SiQ. dielectric, this capacitance is ~0.4 pF. Lines
connecting the pads are 25 um in width and are assumed
to be 00 um above the ground plane. When a number
of chips are connected on the same substrate, a typical
length separating a nearby pair is of the order of I ¢m.
At this distance transmission line standing wave effects
are not significant (i.e., A = 30 cm).

The line capacitance in this case is onlv 4.5 {F. The
total capacitance becomes C, = 0.8 pF + 0.0045 pF +
0.1 pF = 0.9 pF and the switching power P, = 430
uW,

Next consider a simple electrooptic link consisting
of a semiconductor source and detector. Initiallv it is
assumed that all the light from the source is tocused on
the detector. The detector circuit model is shown in
Fig. 1. The current generated is a function of the
physical parameters of the junction and the illumina-
tion,”

qtl = r)

o=

; ; 1T = expt—n,o.
1
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Fig. 4. Detector circuit model. The space-charge region of the

junction results in a capacitance shunting a photon induced curren:

source. The series resistance is typically a tew chms and can b nee

glected. The parallel resistance is of the order of 107 Q and cau be
assumed to be an open cireuit.

where [, is the photocurrent, € is the optical flux. ¢ is
the electronic charge, r is the Fresnel reflection cocii-
cient of the detector surface, hv is photon energy., . is
the semiconductor absorption coefficient at N, and = i«
the absorption width. Typical responsivity for a silicon
device is 0.4 A/W.

The usual condition of low series and large shunt re-
sistance simplifies the model to a capacitance shunting
a current source. Current from the detector must
charge the gate to its threshold level in a time less than
the clocking period 7. If no preamplifier is assumed.
all current must originate from electrons generated from
the incident optical flux ®. For a 2-um thick, 25-um
square active area detector. the junction capacitance is
Cy = 32.5fF. Since the detector must charge the ca-
pacitance of a gate, the total capacitance is (', = Cy +

" =825 fF. For a threshold voltage of ~1 V,

Vo= /0,

Q= fyidl ~1Ir,
W

T =1 nse¢.

With 200 W of incident optical power, 80 A of current
can be generated in the detector and can produce 80 {0
of charge. This is sufficient to produce the 1-V
threshold value. Assuming a laser diode electrical to
optical conversion efficiency of 307, the electrooptic
link will require ~670 uW of electrical power. (A large
fraction of the power needed to drive a diode is not re-
active. The important consideration here is the amount
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of power required to rransmit comparable optical and
electrical signals. In the electrical case with FET type
devices, the power is primarily reactive in nature, while
the optical svstem also requires a real power component.
The consequence of this difference is not signiticant at
this level of analysis. It would need consideration if
heat dissipation effects were investigated.)

These first-order considerations indicate that, with
currently available electrooptic technology, the power
required for an electrooptie link is of the same order of
magnitude as that necessary for the electrical chip-
to-chip interconnection and would not suffer from the
problems previously outlined for conventional inter-
connections. The electrooptic link compares less fa-
vorably with gate-to-gate connections on the same
chip.

il.  Optical Chip-to-Chip Layout

The chip-to-chip interconnect problem can be for-
mulated in more specific terms as shown in Fig. 5. One
or more integrated systems are mounted on a common
substrate separated by distances of ~1 em. As men-
tioned previously, at these lengths and frequencies of
1 GHz. transmission line effects are not significant.
Bonding pads are assumed to be 100-um square and
separated by 100 um. Several hundred bonding pads
must be connected. Each transmission point should
be able to address several receiver locations; it is also
desirable for channels to cross without interference.

An imaging system can provide this connection
mechanism. Consider the arrangement of Fig. 6. A
semiconductor emitter illuminates a holographic optical
element coded to distribute radiation to one or more
image points. Photodiodes convert optical to electrical
signals, which are then decoded by a digital electronic
circuit.

Advantages of using holographic elements include
their adaptability to decentered layouts by using off-
axis recording geometries and to fan out by using se-
quentially exposed multiple holograms.

A number of factors must be considered in a practical
system of this type. The most attractive sources and
detectors are those made from materials which are
compatible with integrated electronics. Semiconductor
sources developed for optical communications have
emission wavelengths from 780 nm to 1.6 um. To date
only a few holographic recording materials are respon-
sive at these wavelengths and these are not very sensi-
tive.!

Other considerations are the emission profile and
polarization characteristics of the source. Laser diodes
have an emission profile corresponding to the diffrac-
tion pattern of the junction geometry. Planar stripe
junction diodes have transverse mode divergence angles
which have typical values of 60° by 10°. Therefore only
a portion of the volume above the source will be illu-
minated. The hologram need only occupy this region
above the source to be effective.

The polarizations of these two directions are or-
thogonal.  Kogelnik!® has shown that polarization
vectors oriented in the plane of incidence of the grating

Qutput Bonding Fad . Receiving Pads
— R
N f ICws 7
DR 2
S N T f
IC#I_/C:‘T-' = /,« Substrate
R

Fig. 5. Geometrical lavout of a chip-to-chip connection. T'wa in-

tegrated circuits are mounted on a common substrate with /. = 1.5
e, e = 1 em, and bonding pad widths and separations = 100 gm,

HOE = D -
P g '
. T v EMISSION !5
PROMILE Y, ’ !
" .\ Ny
.
AN /" L
Substrate ’ . ~ Source \y' .
_Source__pd- =

4 PD
Fig. 6. Imaging system for chip-to-chip communication. Light
emitting sources and detectors replace transmitting and receiving
bonding pads. A hologram is used as the imaging element.  Design
must include f/No. or {71} ratio, intensity emission protile of the
source, and source-detector separation.

produce a reduced coupling constant and diffraction
efficiency which results in lower image intensity.

A LED is also a potential semiconductor source. It
has the advantage of being a surface emitter and is much
easier to fabricate than a laser diode. In addition they
can be made to emit in the visible by introducing traps
in the band gap. However, they are inefficient in
comparison to laser diodes and have spectral band-
widths of ~20 nm. Also they emit unpolarized light
which results in lower diffraction efficiency for the
reason mentioned above. Their intensity emission
profile is cosinusoidal in angle and therefore illuminates
a larger region of a hologram than would a laser diode.
Image reconstructions with this tvpe of emission profile
are brighter when the hologram occupies large solid
angles relative to the source.

IV. Holographic Optical Element Characteristics

The requirement for a compact system implies that
the element must have a small f/No. This also im-
proves flux collection. The meridional angles for f/1
and f/3.5 elements are 26.5° and 8.1° in air. A model
for ditfraction efficiencv must be valid for grating vec-
tors covering this angular range. A relatively simple
description of grafting diffraction efficiency is Kogel-
nik’s coupled two-wave treatment.!? The expression
of efficiency for reflection holograms with absorption
is given by

£ -1
n= [E/v + (1 + %] coth(v? + £01:2|
v

where 5 is the diffraction efficiency,

V=N ————
A YRR
E=112D01 = ¢, le,),
oad

costly
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ny is the refractive-index modulation, d is the grating
thickness, ¢, and ¢, are obliquity factors, « is the ab-
sorption/length, and 0 is the Bragg angle. The planar
grating treatment can be extended to curved surfaces
by assuming that the surface is locally plane in the re-
gion where the ray intersects the grating.!!

A number of planar volume phase holograms were
formed in bleached photographic film. The thickness.
refractive index, and postbleached absorption were
measured to obtain average values for these parameters.
The results were then used in Kogelnik's model to
predict the diffraction efficiency curves and were
compared with measured curves. Although slight
changes to the values for absorption and emulsion
thickness change had to be used. the agreement was very
good. Figure 7 shows two measured diffraction effi-
ciency curves from gratings with K orientations ap-
proximately equal to the meridional angles of f/] and
f/3.5 systems. High diffraction efficiency is maintained
over a large range of playback angles. The holographic
optical element (HOE) field of view is essentially this
angular range and is ~30° for 25° grating slant angles
and 60° for 10° slant angles corresponding to the f/3.5
system.

A single grating element can interconnect a number
of sources and their conjugate receiver locations over the
angular range of high efficiency. When source recon-
struction coordinates differ significantly from formation
positions, hologram image aberrations reduce image
irradiance. Aberrations can be evaluated with ray
tracing techniques. For thick holograms these ex-
pressions may be derived from the reflected ray com-
ponents which are perpendicular and tangent to the
grating vector: r = (K-r)K — K X (K X r), where r is
a unit vector along the reconstruction ray, and K is the
grating vector givenby K = r, — r.,and r, and r_ are
unit vectors along the object and reference ray direc-
tions, respectively. The reconstructed or image ray is
r=—(KrK-KX(KXr).

The spot diagram generated by ray tracing should be
adjusted for the variation in efficiency at different lo-
cations in the aperture of the volume HOE. However
it has been shown that a close relationship exists be-
tween the observed image field and the density of rays
traced through the element.!” Figure 8 shows the spot
diagram of rays from a source point displaced 0.5 cm
perpendicular to the axis and 0.1 cm along the axis from
the source formation positions for f/1 and /3.5 ele-
ments. It is clear that off-axis imaging degrades much
more rapidly for smaller f/No. HOEs.

A computer program coding the grating equation can
be used to generate a spot diagram at any desired image
plane. When used in conjunction with Kogelnik'’s ef-
ficiency model, both the aberrations and the efficiency
of the ravs forming the image can be determined. This
gives a better indication of the distribution of flux at the
receiver location and the detector current produced
from a source of given size, output power, and location
relative to the HOEK.  Such a program is currently under
development in our lab for use with multiple image re-
tlection hologram design.
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Fig. 7. Measured diffraction efficiency curves for gratings with K
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Fig. 8. Spotdiagrams for f/1, and //3.5 systems with a reconstruction

source paint 0.5 em from the axis of the element at x = 0, v = 0.
Computations are based on the grating vector equation.

The effective HOE aperture and reflection losses also
restrict the usable source power. The solid angle sub-
tended by the HOE relative to a source point is

0= (n & L'uiﬂ
4/ r-
where D is the diameter of the hologram aperture, / is
the angle from the source point to the center of the ho-
logram, and r is the distance from the source point to the
hologram center.

If the source is a Lambertian emitter, the tlux col-
lected by the aperture of the HOE is b = ([ costHil,
When the source and optical element are on-axis, 12.5%
of the available source power is collected with an f/1
system ana only ~1.0% for an /3.5 system,

If the hologram recording medium is not index
matched to the source and detector surfaces, Fresnel
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Fiz 9. Simplest holographic confiyuration for imaging interconnects.

Lizht from a point source is imaged to a diametrically opposite point.

Several sequential exposures can be encoded and used to produce an

imarant pattern of images. ‘This can be used for invariant fan-out
configurations.

retlection losses also reduce the flux entering the grat-
ing. The recording medium used has a refractive index
of 1.64, resulting in transmitted intensities ranging from
91 to 937 for incident angles of 0-30°. Therefore 7-9%
of the available source power is lost by reflection. Ifa
fixed amount of flux ®g, is required at the detector,
axially located sources must have output powers g,
exceeding this value by &, = udy,, with u = 1/(0.125
» 0.08) = 9 for an f/1 system, and u = 1/(0.01 + 0.08) =
109 tor an f/3.5 system. Therefore considerable power
is required from a Lambertian source even when a 100%
efficient hologram is used.

The divergence angle from a laser diode is approxi-
mately matched to the meridional angle of an f/1 ele-
ment (~30° for the laser and 26° for the optical element.
This implies that all the power from a laser diode can
be collected by a smaller aperture than for a Lambertian
source. A laser diode can therefore have much lower
input power and still produce the required detector
current and perform the switching task.

After considering the above HOE and semiconductor
source characteristics, three types of hologram config-
uration appear to offer a solution. The first arrange-
ment is a large aperture reflecting lens with one or
multiple gratings (Fig. 9). This element is relatively
easy to fabricate and position and uses a point source
for reconstruction. Multiple grating formation allows
a single reconstruction source to address several loca-
tions simultaneously. It does however restrict the lo-
cations of sources and detectors to positions along di-
ameters which pass through the optical axis, and fan out
can only be accomplished in an invariant pattern. This
restriction may preclude this arrangement from prac-
tical application but it is important for optical system
evaluation. The second and third configurations utilize
the multifacet or aperture partitioning concept recently
discussed by Haugen et al. " for transmission holograms
and requires directed beam reconstruction either from
a laser diode or a directed LED emission pattern. In
ane of these arrangements a mask with the address
pattern serves as the object wave and a converging beam
as the reference wave (Fig. 10). ‘This method has the
attractive aspect of having an 1C compatible technique

HOLOGRAM
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Fig. 10. Combined muitifacet hologram and variable image mask.
A separate hologram facet is formed with each fan-out pattern en-
coded on the mask. The mask and hologram are translated with re-
spect to each other. Each hologram is formed with a converging
reference wave to allow playback with an expanding beam.
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Fig. 1. Multifacet hologram formed with selective object source
points.  Source points are encoded in sequential fashion. This is the
muost flexible configuration but also the most difficult to implement.

(i.c., mask making) used for generating an address
pattern. The drawbacks of this arrangement are the
intermodulation terms which limit the efficiency of the
reconstruction images.!* It is not obvious where this
becomes restrictive for this application. In the last
hologram configuration proposed each facet is illumi-
nated sequentially with a number of diverging object
beams and a converging reference wave (Fig. 11). The
positions of the object beams can be moved automati-
cally with a computer-controlled stepper motor drive
and beam ratios can be adjusted for maximum diffrac-
tion efficiency. This configuration appears to offer the
most flexible arrangement for fabricating an intercon-
nect pattern since it satisfies requirements for both a
large number of independent channels and spatially
variant fan out. The difficulty with this HOE fabri-
cation technique is the mechanical complexity of the
mount; however there appears to be no fundamental
restriction to its implementation.

V. Experimental Results

To evaluate some of the above ideas a number of ex-
perimentai systems were fabricated and tested. Only
the first hologram design described above is discussed
here. The other two hologram types will be presented
in future papers.
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Table ): Source and Detector Characteristics
Hewlett-Packard
Sources Litronix (HP)
Input power 155 mW 140 mW
Qutput power 70 uW/str 80 W /str
Intensity profile Lambertian Lambertian
Size 250 um* 150 um?
Apeak 660 nm 635 nm
AN 20 nm 20 nm
Detectors HP EO Coupler PD HP4205 PIN
Size 400 um? 200 um (diameterd
Responsivity (630 nm) 0.1 A/W 0.4 A/W

The effects of image degradation and power loss were
determined by mounting a number of sources and de-
tectors at increasing separations and measuring the
received detector photocurrent. The operating char-
acteristics of the sources and detectors are given in
Table . The sources are surface emitting GaP LEDxs.
The primary reason for using these devices is their peak
emission in the visible (635 and 655 nm) making them
compatible with a number of available holographic re-
cording materials. They have about a 20-nm spectral
bandwidth and a near Lambertian intensity emission
profile. Their main disadvantage is their poor electrical
to optical conversion efficiency. Measured efticiency
of both the 635- and 655-nm LEDs is ~0.5%. Sources
and detectors used were in chip form with cross-sec-
tional dimensions of the same order of magnitude as the
size of the bonding pads (see Fig. 12).

Two source-detector mounts were used. On the first,
the devices were set on the common conducting plane
of a dual in-line [C package. This arrangement allowed
evalution of both electrical coupling and direct optical
scattering on the detector signal received from the
source image. The second mount had source and de-
tector on different substrates and was optically isolated
to allow examination of the effects of image degradation
and aperturing at large source-detector separations.

Figure 13 is a plot of the ratio of photodiode current
with the image of the source focused onto the detector
to the current with the image focused just off the de-
tector. Response with source-detector separations
from 86 um to 4 mm was obtained with the source and
detector mounted on the same conducting substrate. [t
appears that optical scattering and electrical coupling
greatly reduce the effective signal response at separa-
tions <100 um. At separations from 2 to 4 mm, con-
trast ratios increase more slowly than at closer separa-
tions. With source and detectors on separate substrates
and isolation from optical scatter, the contrast ratio
improves by an order of magnitude at 1.0-cm distances,
then falls by a factor of 2 as separation increases to 2 cm,
The talloff at larger separations results from aberrations
which reduce image irradiance.

‘The image of the source was also observed ona CCD
line scanner to directly evaluate the image irradiance
pattern. Figure 14 shows these profiles when the
635-nm LED is 0.45, 0.60, 1.00, and 1.50 ¢m from the
linear scanner. The hologram used for these mea-
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Fig. 12, Litronix LED with 250-am? enission area and i Headenr
Packard photodiode from an electrooptic coupler with 1060 gan- aetive

area. The separation of the two chips is ~60 um,
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Fig. 13, Plotof the ratio of photodiode current with image focused

on the detector 1o the current with the image tocused off the detector.

The equipment used did not allow measurements with source de-

tectar separations from 4 to 1) mm; (X) indicates measurements ob-

tained with sources and detectors on the same substrate; (0O) on
separate substrates.

S
b
@

Fig. 14, COD line scan traces of images of the 635-nm LED produced

with the /1.9 HOE. The CCI has 256, 13-gm elements. Oscillo-

scope scale is 330 pm per t em. Source-CCD separations are tad 040
cm; (b) 0,60 em; (¢) 1.00 em: and (d) 150 em.
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Fig. 15, (a) Schematic of holugram construction arrangeiment to form
a multiple image with a single reconstruction source.  The film plane
is translated through tixed construction beams.  (b) The resulting
element is in effect a set of reflecting lenses with displaced optical axes
which unage the source relative to their respective axes. The lenses

in (h) are shown untolded for clarity.

surements has a diameter of 1.5 cm and is 3.10 ¢m from
the source-detector plane. The CCD scans indicate
that the talloff in effective signal response at large
separations results from an increase in the image area
and a corresponding decrease in image irradiance illu-
minating the detector.

A number of multiple exposure holograms were made
to examine the potential of optical fan out. Elements
were made with the arrangement shown in Fig.
Converging and diverging wave fronts overlap to form
an on-axis reflecting lens type hologram. The film
plane is then translated in this overlap region to form
a number of holographic lenses with their optical axes
displaced by the amount of translation. A single re-
construction source has a different displacement from
the optical axis of each encoded element and therefore
images the source at a different position in space.
Figures 16(a) and (h) show images produced from two
such elements.  In the first, film translations of 0.7 by
0.25 ¢m were used, while in the second 0.5-mm move-
ments were made.  Both situations give well-resolved
images with full width at half-intensity maxima
(FWHNMD of ~300 um. The LED emission surface is
150 um in length.

VI. Conclusions and Future Research

Reactive power considerations indicate that with
current electrooptic technology an optical chip-to-chip
interconnect requires approximately the same amount
al power to transmit high speed signals as electrical
connections but without the need to devote large sec-
tions of the circuit substrate to communication chan-
nels. This would allow the use of more input output
ports and increase the information capacity of the 1€,

(b)

Fig. 16. (a) Photograph of multiple images formed with an element

having (.25-cm horizontal and (.70-cm vertical displacements using

a LED reconstruction source. The diode is 1 ¢cm from the center of

the image pattern. (b) Photograph of a CCD line trace of the LED

imaged by a HOE with three 500-um translations. Scale is 330 um
per 1 em.

It could also reduce electrical coupling difficulties of
conventional interconnect schemes. The chip-to-chip
interconnect can be recast in terms of an optical imaging
system with semiconductor sources as signal transmit-
ters and photodiode detectors as receivers.

The diffraction efficiency characteristics of reflection
volume holograms have sufficient angular response to
accommodate source-detector separations of a few
centimeters. These separations also require that the
holographic element be located a comparable distance
above the circuit substrate. Other practical consider-
ations are Fresnel reflection losses and flux collection
charaeteristics of a particular f/No. element and source
emission profile. Serious limitations also exist in the
lack of compatibility between efficient semiconductor
sources and holographic recording materials. A match
hetween these components would allow use of much
more efficient sources and greatly improved flux col-
lection geometries.

Initial experiments indicate that electrical and optical
coupling are serious problems when sources and de-
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tectors are <100 um apart and the image blurring causes
the falloft in detector irradiance at separations of a few
centimeters and greater.

Experiments also indicate that sequentially exposed
holograms have sufficient resolution to address a
number of receivers spaced from several hundred mi-
crometers to centimeters. This could be used to im-
plement a number of very flexible interconnect patterns
without the drawbacks of conventional electrical sys-
tems.

This work was supported by the Air Force Office of
Scientific Research. One of us (RKEK) would especially
like to thank IBM for fellowship support during this
period.
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Abstract. Optical beams are known to have many desirable properties when
used for providing interconnections. Such interconnections would be used in an
all-optical computer based on optical gates, but can be used at various levels of
architecture in electronic computing systems. The fan-out of optical interconnec-
tions from one computing element to N computing elements is accompaniced by
an N-fold loss of light power for each connection, Less obvious is the fact that
fan-in of connections from N computing elements to a single computing element
can in some cases also be accompanied by an N-fold loss of power.

1. Introduction

Much attention is now being given to the possible use of optics as a means for
providing interconnections in computing structures of various kinds at various levels
of architecture [1- 3]. The main attraction of optics in this regard is the freedom from
interference between adjacent channels of interconnections, arising fundamentally
from the fact that most propagation media are linear at the light levels that would be
used for such signals. Interconnection paths formed by flows of clectrons have a
strong tendency to interact, due to the fact that such flows are composed of moving
charges.

Optical interconnections can obviously be utilized in an all-optical computer, for
which the basic logic operations are performed by optical logic elements, perhaps
based on optical bistability. However, they can also play a more immediate role in
hybrid opto-electronic computers, in which the tendency of electrons to interact is
exploited to produce nonlinear interactions of signals in electronic logic gates, while
optics is used to provide interconnections at some levels of architecture. Applications
of optics for interconnections at high levels of architecture (machine-to-machine or
processor-to-processor) are currently most easy to realize, while optical interconnec-
tions at the lowest levels of architecture (e.g. gate-to-gate connections) are maost
difficult to realize,

In this paper we examine some fundamental properties of optical interconnec-
tions related to their fan-in and fan-out properties. The term fan-out refers to the
splitting of a single node or interconnection into several interconnections, cach
carrying the same signal. The term fan-in refers to the coming together of several
interconnections into a single interconnection or node, all of the component signals
being added to form a single signal. The two cases are illustrated in figure 1. We will
show that optical and electronic interconnections share some properties but also
differ in some fundamental ways. In particular, we shall see that electronic and
optical interconnections are quite similar with respect to their fan-out properties,
but can differ markedly in their fan-in properties.
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() (h

Figure 1. Representation of (a) fan-out and (b) fan-in,

2. Fan-out

It is very common in the construction of complex logic circuits that the output of
a single gate must be sent to the inputs of several gates that follow. A simple example
is shown in figure 2 {1]in which the output of one inverter drives the inputs of several
inverters in parallel. In order to activate the parallel set of inverters, it is necessary
that the current supplied by the first inverter charge the input capacitances of the
following inverters to the point where the voltages across those capacitances all
exceed the logic threshold voltage. Other examples can be found at higher levels of
computer architecture. For example, in the construction of a crossbar switch for
mnterconnecting several processors and memory modules (see figure 3), fan-out must
be present if the switch is to offer broadceast capability, i.e. the capability of a single
module to broadcast a common message to several other modules simultancously.
Again a single output must charge the inputs of a parallel array of capacitances.

It is tempting to believe that optical interconnections offer a distinct advantage
215-a-21s electrical interconnections when substantial fan-out is present. However, as
we now argue, this is generally not the case. An optical interconnection (fignre 4 (a))
1s established by driving an optical source (a laser diode or an LED) with an electrical
current. The optical source converts the flow of electrons into a How of photons,
subject to certain limitations on the efficiency of that conversion. A portion of this
How of photons is incident on a photodetector at the far end of the interconnection.

-
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Figure 2. Fan-out of connections from one inverter to other inverters.
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Figure 3. A crossbar switch. Modules 1, 2and 3 can be connected to modules 4, Sand 6 inan
arbitrary fashion.
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Figure 4. Optical interconnections (a) for a one-to-one interconnect, and (b) with N'-fold
fan-out.
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The photodetector converts the How of photons into a low of electrons, again subject
to certain limits on conversion efficiency. Finally, the How of electrons must charge
the input capacitance of a gate to its logic threshold voltage. Just as the How of
electrons must be divided N ways if an electronic interconnection with N-fold
fan-out is to be established, so too the flow of photons must be divided N wavs if un
optical interconnection with N-fold fan-out is desired (figure 4(h)). In both the
electrical and the optical cases, fan-out by a factor N will result in an N-fold increase
in the time required to charge the N capacitors at the ends of the N interconnections,
unless the rates of electron and photon flows are increased by a factor-N to
compensate. Thus an optical interconnection in effect suffers from the same
capacitive-loading effects that an clectronic interconnection experiences, contrary to
what might have been expected at the suart.

There 1s one respect (in addition to the immunity of optical interconnections to
interference mentioned carlier) in which optical interconnections do offer a potential
advantage. If the length of a metallized electronic interconnection is substantial, then
the capacitance of the interconnection itself may become comparable to or even
greater than the capacitance of the gate at the far end. The increased capacitance will
result in slower charging times and lower transmission speeds for the interconnec-
tion. An efficient optical interconnection does not possess any characteristics similar
to the capacitance of the interconnection line itself. Therefore when long inter-
connections are required, optics may have a distinct advantage. However, a recent
examination of the chip-to-chip interconnection problem [2], for which inter-
connection lengths of only a few centimetres were assumed, showed that the
capacitances of the metallic interconnection lines were small compared with the
capacitances of the bonding pads, indicating that this potential advantage of optics
may not be important for short-distance communication between chips.

One important difference between optical and electronic interconnections
becomes evident when further optical consequences of fun-out are fully considered.
Such consideration requires the use of the principle of conservation of generalized
étendue [3, 4], often referred to as the constant radiance theorem [3]. According to this
theorem, the product of the cross-sectional area and the square of the numerical
aperture of an optical beam must remain constant under anv fossless linear
transformation of that beam. Thus the fan-out of a single optical beam of cross-
sectional area 4 into N beams, each of cross-sectional arca A4, must be accompanied
by a reduction of the numerical apertures of the new beams by a factor | N. Such will
be the case whether the optical interconnections propagate in free space or in
multimode waveguides and fibres. This theorem, which is derived using the
principles of geometrical optics, does not hold in the case of single-mode guides, for
which geometrical optics is not valid. The fact that fan-out of optical beams changes
the beam divergence has no obvious analogue in the case of electronic interconnec-
tions. The imphications of the constant radiance theorem in the case of fan-out, while
important, are overshadowed by those for the case of fan-in, to which we now turn.

3. Fan-in

Just as fan-out of multiple connections from a single logic gate 18 common, so too
fun-1n of multiple connections to a single logic gate is often required. Fan-in is also
required at higher levels of architecture. For example, some forms of crossbar switch
arc constructed in such a way that all input lines can simultancously address a single
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output line. Therefore, it is important to consider the consequences of fan-in for
both electronic and optical interconnections.

Figure 3 illustrates a generic kind of fan-in connection. When the connections are
electrical, all sources of current must be capable of charging the input capacitance of
the final node to the logic threshold voltage. However, if the output impedances of
the devices driving the lines are finite, a portion of the current generated by one
source will flow back through all other lines, causing the rote of charging of the
desired capacitance to be slower than would be the case with no fan-in. The degree to
which the speed of the circuit is limited depends on the output impedances of the
sources and on the number of such lines being fanned-in to a common point.

It might appear at first glance that optical interconnections do not suffer from
tan-in limitations of the above kind. Indeed in some cases they do not, but in other
cases there is a very important limitation associated with optical fan-in, which, while
ditferent in origin than the effect encountered with electrical interconnections, none
the less has similar or even worse consequence s. T'he opucal effect can again be
viewed as a consequence of the constant radiance theorem, and its seriousness
depends on the relationship between the cross-sectional arcas and the numerical
apertures of the beams that are being fanned in, and the same parameters of resultant
beam after fan-in. If the fan-in of Nidentical optical beams is onto a detector with N
times the cross-sectional area of the individual beams, or with an acceptance
numerical aperture that is .V times the numerical aperture of one of the incident
beams, then there need be no penalties associated with fan-in (aside from the fact that
a large optical detector penerally has a high capacitance and a correspondingly slow
spred). On the other hand, it the fan-in requires that .\ identical and mutually
incoherent beams be combined to form a single beam with the same cross-sectional
arca and the same numerical aperture as those of any one of the incident beams, then
the constant-radiance theorem implics thut the optical power delivered into the
resultant beam cannat exceed U Nith of the tatal incident sptical power carried by all the
interconnections.

The above cunclusion can have profound cifects on the design of optical
interconnections. For example, one possible way to attempt an N-fold fan-in of
optical beams is by means of u holographic optical element used as a beam combiner.

!
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Figure 3. Fan-in of clectnical connections,
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The hologram is recorded by sequentially or simultancously recording the inter-
ference patterns between a single reference plane wave and N object plane waves
travelling at different angles with respect to the reference wave (figure 6 (a)). When N
beams are incident on the resulting hologram at angles duplicating those of the
original object beams, there will be generated a beam propagating in the direction of
the original reference wave, carrving contributions from all of the incident beams
(figure 6(b)). It has been assumed for simplicitly that the wavelength of the liche
exposing the hologram is identical to that of the light incident during the beam-
combining operation. The cross-sectional area and the divergence angle of the
combined beam should be identical with those of the beams incident on the
combiner. However, the constant-radiance theorem implies that, on the average, the
new beam can contain no more than 1/N'th of the power from each of the incident
beams, the average being over all possible relative phases of the incident beams. The
light not carried by the combined beam can be shown to appear in other orders of
transmitted light,

An intuitive argument confirming the prediction of the constant radiance
theorem can be reached by considering the same holographic elementilluminated by
abackwards travelling version of the original reference wave. The hologram can send
at most 1/ N'th of the incident light into each of the back-propagating versions of the
object waves. Thus any single grating in the hologram can be at best 100 N per cent
efhicient, and in general will be even less efhicient.

It has been implicitly assumed in the above arguments that the beams to be
combined have random phases with respect to one another. Such will be the case if
the beams to be combined originate from different optical sources. It will also be the

case when all beams originate from the same source unless the entire optical

(et}
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Frzure 60 A holographic beam combines (a) construction and thy utihzation
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interconnection svstem s stabilized to maintain absolutely constant paths in all
arms. Such a stabilization seems unbkely in practice. For any one reahization ot
relative phases between beams, the amount of optical power transterred 1o the
resultant beam would be inluenced by interference between the various contribut-
ing beams, and could be greater than or less than the power predicted by the
constant-radiance theorem.

Similar conclusions also apply if the beams are travelling in single-mode
waveguides. Tt 1s known {6] that the amount of power coupled into a single
monomode waveguide from a Y-junction of two identical monomode waveguides
(figure 7) carrving identical optical powers may be as great as twice the power carried
by one of the input guides, or may be as small as zero, depending on the relative
phases of the two incident beams. If the phase difference between the two beams
varies randomliy and uniformly over 27 radians, then the predictions of the constant-
radiance theorem are obtained, namely on the average, one half of the incident power
will be trunsferred to the outgoing guide.

4. Concluding remarks

The assumption that optical interconnections are superior to clectronic inter-
connections from the viewpoint of fan-out and fan-in is in general unwarranted. The
tan-out properties of optical beams are essentially the same as those of electrical
connections, The fan-in properties of optical beams are somewhat more complex
than those of electronic interconnections. 1F .V identical incoherent beams are to fan-
in to a single beam with the sume cross-sectional area and the same angular
divergence as the input beams, then there must be a significant and fundamental loss
of power associated with the fan-in operation. If the N beams are mutually coherent,
then the amount of power trunsferred to the resulftant beam depends on the relative
phases of the component beams, but averaged over all possible relative phases,
results 1dentical to those of the incoherent case will be obtained.

There are still good reasons to be interested in optics for interconnections,
principally the relative immunity of optical beams to mutual interference etfects. A
second important reason for interest rests on the potential for constructing dynamic
optical interconnection networks, which would allow rapid reconfiguration of
interconnections and thereby offer a new degree of freedom for computer design.

P d

Figure 7. A monomode wavegade Y-junction.
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The first known experimental results of real-time optical defect enhancement of a periodic mask are reported. A
low-intensity reterence wave interferes with the Fourier transform of an object beam to form a hologram in a photo-
refractive crystal.  The nonlinear properties of the crystal perform a filtering operation, and phase-conjugate read-
out results in a defect-enhanced image.  Defects of size 10 um X 100 um have been easily detecced with high signal-
to-noise ratio, and a discussion of performance limitations is presented.

We consider the problem of selectively enhancing de-
fects in a mask that consists of mostly periodic struc-
ture. This type of problem in image processing occurs,
for example, in the inspection of integrated-circuit
masks.  Digital techniques for inspection of a two-
dimensional tield, generally utilizing a dual-scanning
microscope svstem and sophisticated algorithms for
comparison and detection, are complicated and time
consuming.! ¢ Optical systems. however, offer the
advantage of parallel processing.  Furthermore. there
is no excessive requirement for accuracy in the output
in terms of the actual intensity at each point. It is
suttictent that the signal associated with the defect be
much larger than the signal associated with the sur-
rounding periodic structure. so that, for example, a
thresholding operation can be used to determine the
detect location.

Optical spatial-filtering technigues to perform defect
enhancement have heen examined in the past with re-
sard tosuch applications as inspection of the electron-
beam collimating grid and the silicon-diode-array target
for a television camera tube as well as for inspection of
photomasks used in the manufacture of integrated
cireuits.” ¥ These svstems used a filter in the Fourier
plane to attenuate the discrete spatial frequencies of the
periodic portion of the mask, so that, on retranstorma-
tion. only defects were present in the output. Although
the results of such systems were promising, the useful-
ness of the technigue was limited by the fabrication time
or ditficulty of the tilter and by the need to use high-
gquality, low-f-number lenses when inspecting objects
of large dimensions.  Recently the second constraint
was removed by emploving holographic recording of the
output combined with phase-conjugate readout.’
AMthough this method has been used to detect submi-
crometer defects, it requires two processing steps: for
cach mask 1o be inspected. a new hologram must be
recorded, and for each ditferent type of mask, a new
photographic filter must be made.

We present a method to enhance defects in real time.
n~ing a photorefractive ervstal. Use of the ervstal al-
lows holographice recording, filtering, and phase-con-
pcate readout processes to be pertformed simulta-
neou-hv The mask 1o be inspected is placed in the

CHD 1S 9000 0 00 G0N o o

input plane, and the defect-enhanced image appears at
the output plane, in a time limited only by the time
constant of the photorefractive material. This time
constant, which depends on the material used and the
incident light intensity, ranged from about 50 to about
250 msec for our experimental parameters. This
method also differs from that described above in that
all operations are carried out in the Fourier domain. To
our knowledge. this work is the first demonstration of
a real-time system for enhancing defects in a periodic
mask.

The technique for performing real-time defect en-
hancement is based on two observations. The first is
that the Fourier transform of a periodic object is an
array of discrete spikes whose width depends inversely
on the input field size and whose spacing depends in-
versely on the period of the mask. In contrast, the
Fourier transform of a small defect is a continuous
function that is several orders of magnitude less intense
than the periodic spikes. The second observation is
that the diffraction etficiency of a volume phase holo-
gram formed in a photorefractive medium is maximized
when the intensities of the two writing beams are ap-
proximately equal and decreases as the ditference in
intensity increases. For a reference plane-wave in-
tensity (/,) more intense than the object-beam intensity
(1,)). the output is proportional to the object-beam in-
tensity: for an object beam more intense than the ref-
erence beam, the cutput is proportional to the intensity
inverse of the object beam. A tvpical dittraction-etti-
clency versus beam-ratio curve is plotted in Figz. Tona
log -log scale. assuming that beam ratio R « [ [V s
varied by changing [ while keeping 1o fixed. " This
curve was generated by using the standard Koselimk
expression for diffraction eftivieney?

"
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Fig. 1. Diffraction efficiency versus beam ratio. Shown is
a typical curve for photorefractive BSO or BGO.

portion of the curve, are given in Ref, 11.) Therefore,
a defect can be enhanced by focusing the Fourier
transform of the mask onto the photorefractive crystal
and making the intensity of the peak spectral compo-
nent that is due to the defect less than or equal to the
intensity of the reference beam. The intensity of the
spikes that is due to the periodic structure will be so
much greater than the reference-beam intensity that
the corresponding diffraction efficiency will be very
small. Thus the refractive-index pattern formed inside
the crystal performs both recording and filtering oper-
ations.

The technique of using a weak reference beam and
astrong object beam to perform optical processing is not
new. Ragnarsson recorded filters in photographic film
with this technique in order to perform division.!® This
technique has also been used in photorefractives to
obtain edge enhancement of binary images, by both
Huignard and Herriau in BSO'" and by Feinberg in
BaTi0..!> However, to our knowledge, this is the first
use of the technique in photorefractives to enhance se-
lected features in an object beam and suppress
others. -

A Fourier-optics analysis can be used to describe the
propagation of light from the object to the crystal.
Suppose that the mask has dimensions W X L and that
a small transparent defect, located at (xg, ¥¢), has di-
mensions w X {. Let p(x, y) represent one unit cell of
the periodic structure, which is spaced at intervals of
lengtha. The intensity of the Fourier transform at the
crystal, assuming W, L > a and unit illumination, is

1 1 nn
Yy )2 — )= il e
I7(UvL)I _(,\I)Q[(WI) 04%‘,2"1 (a’a)

X sinc‘*’[W ((u - E) sinc'l[l, ([! - ﬂ)]
a a

+ (wl)? sinc2(wu) sinc‘l(lv)} ,

where the sinc function is as detined by Bracewell.!

The spatial frequencies’ variables are related to spatial
variables as u = x/\f and v = y/Af, and P(u, v) is the
Fourier transform of p(x, ¥). P(0, 0) represents the
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transmitting area of one period of the pattern, and ’(0,
0)/a? is the fraction of the mask area that is transmitt-
ing. At the crystal, the hologram should be recorded
such that the intensity of the periodic portion of | T'tu,
v)|? is greater than the reference-beam intensity /,. and
the intensity of the defect portion of | T{u, v)]? is less
than /,. Mathematically, it ) is defined as the relevant
dvnamic range of the periodic portion and /, is the in-
tensity incident upon the mask, then the two conditions

are
WLz P20, 0) 1 wiiz
11( ) P D>1r, 1, (/\7,) </,

b

/ VA/BS

FTL cl
Polarizer % 4
SRAN
C—/ Olnjcc't\/ y

v ¥
Screen

Fig. 2. Experimental setup. VA/BS, variable attenuator/
beam splitter; BS, beam splitter; CL., collimating lens; PCB,
polarizing-cube beam splitter: FTL, Fourier-transform
lens.

() (b)

Fig. 3. Input mask and output-defect-enhanced image. The
coordinates of the seven defects, measured in units of numbers
of squares and taking the center of the lower left-hand square
to be (0, V) are

Defect size Coordinates
(um-) thor., vert.)

100 X 100 (22,7.5)
HO X 100 (10, 13.5)

100 X 50 (12.5, 253)
10 X 100 (15, 20.5)
25 X 100 (24, 27.5)

100 x 25 N

joax 10
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Fig. 4. Intensityline scan of 10 um X 100 um defect. Graph
illustrating the signal-to-noise ratio obtained for the smallest
defect.

If the defect is opaque rather than transmitting, then
the second condition should be modified:

I (l{; ZZP( aJSmC[w (Z) Sinc[[ (,;n” ,

The experimental setup used to obtain defect en-
hancement is shown in Fig. 2. An argon-ion laser (A =
514.5 nm) was collimated and split to form the two
writing beams as well as the probe (readout) beam. A
BSO crysta), of size 8 mm X 8 mm X 8 mm, was oriented
with the x direction shown in Fig. 1 along a {110] axis.
An f/4.9 lens was used to perform the Fourier transform,
and the output was detected by a charge-coupled device
(CCD) camera. The combination of a half-wave plate,
a polarizing-cube beam splitter (PCB), and a second
half-wave plate allowed the beam ratio to be changed
while the polarizations were kept the same. Toimprove
the signal-to-noise ratio, a polarizer was placed in front
of the output to reduce the scattered light.!?

The object mask consisted of a 36 X 36 array of
squares, each with sides of 150 um. The spacing be-
tween the squares was 100 um, so the period a was equal
to 250 um. The total mask size was 9 mm X 9 mm.
Within this array were placed seven transmitting de-
fects of sizes 100 um X 100 um down to 100 um X 10 um,
as shown in Fig. 3(a). The output of the optical system,
obtained using an applied voltage of 4 kV, is shown in
Fig. 3(b). The periodic background has been quite ef-
fectively suppressed, leaving the defects clearly visible.
Figure 4 shows an intensity scan of one line of the output
image, illustrating the worst-case signal-to-noise ratio
obtained. The defect represented is one of the two 10
um X 100 um spots: thus the system appears easily ca-
pable of detecting smaller defects.

In recording the hologram, the object-beam intensity
at the mask (/) was 16 mW/em?, and the reference-
beam intensity was 3.0 mW/cm®, which led to beam
ratios at the crystal of 0.014 to 0.00014, depending on
the size of the defect. Thus the experimental results
indicate that enhancement occurs even for values of R
much less than one. Because the inverse properties
shown in Fig. 1 were derived under conditions of

<.

plane-wave illumination, the filtering properties of the
crystal cannot be described by simply a beam-ratio
dependence. Further investigation into the actual
behavior of the crystal is currently heing undertaken.

The resolution obtained in the output was con-
strained by two factors. The primary constraint was
the size of the crystal. Given the f-number of the syvs-
tem, the crystal captured only the central fifth of the
primary lobe of the sinc function that was due to the
smallest defect; therefore the output of the svstem
produced the defect convolved with a smoothing func-
tion. Thus reducing the f-number ot the optical system
(and using a crystal of larger dimensions) will greatly
improve the resolution capability. The second con-
straint on the resolution was the size of the imaging el-
ements of the CCD camera, each of which measured 23
pm X 13.4 um,

In summary, a method to enhance defects in a peri-
odic mask in real time has been presented. A photo-
refractive crystal is used to perform holographic re-
cording, filtering, and readout process simultaneously.
Preliminary experimental results show detection of
defects down to 10 um X 100 um in size. Detection of
smaller defects should be possible by using an optical
system with a smaller f-number and a camera with
smaller resolution elements.

This research was supported by the National Science
Foundation-Materials Research Laboratory program
through the Center for Materials Research at Stanford
University and by the U.S."Air Force Oftice of Scientific
Research. The assistance of Mike Smith and Zora
Norris in the mask preparation 15 greatly appre-
ciated.

References

1. J.D. Knox, P. V. Goedertier, D. Fairbanks, and F. Caprari.
Solid State Technol. 20(5), 48 (1978).

2. K. Levy, Solid State Technol. 21(5), 60 (1978).

3. KLA Instruments Corp., Solid State Technol. 26(1), 45
(1983).

4. D. B. Novotny and D. R. Ciarlo, Solid State Technol.
21(5), 51 (1978).

5. R. A. Simpson and D. E. Davis, Proc. Soc. Photo-Opt.
Instrum. Eng. 334, 230 (1982).

6. B. Tsujiyama, K. Saito, and K. Kurihara, IEEE Trans.

Electron Devices ED-27, 1284 (1980).

. L. S. Watkins, Proc. IEEE 57, 1634 (1969).

. N. N. Axelrod, Proc. IEEE 60, 447 (1972).

. R. A. Heinz, R. L.. Odenweller, Jr., R. C. Qehrle, and 1. 8.

Watkins, Western Elect. Eng. 17, 39 (1973).

10. R. L. Fusek, K. Harding. L.. H. Lin, and 3. C. Gustatson,
Proc. Soc. Photo-Opt. Instrum. Eng. 523, 54 (1985),

11. K. Ochoa, L. Hesselink, and J. W. Goodman, Appl. Opt.
24, 1826 (1985).

12. H. Kogelnik, Bell Syst. Tech. .. 48, 2009 (1969).

13. S, L Ragnarsson, Phys. Ser. 2, 145 (1970),

14. J. . Huignard and .J. P. Herriau, Appl. Opt. 17, 2671
(1978).

15. ). Feinherg, Opt. Let1. 5, 330 (1980).

16. R. N. Bracewell, The Fourier Transform and Its Appli-
cations (McGraw-Hill, New York, 1978).

17. I P. Herrtau, J. PP Huignard, and P. Aubourg, Appl. Opt.
17, 1851 (1978).

[S=Re JIEN]




W——m ——

APPENDIX D

Neural Networks for Computation:

Number Representations and Programming Complexity

Mitsuo Takcda* and Joseph W. Goodman

Department of Electrical Engineering
Stanford University

Stanford, CA 94305

Abstract

Methods for using neural networks for computation are considered. The success
of such networks in finding good solutions to complex problems is found to be depen-
dent on the number representation schemes used. Redundant 'schcmes are found to
offer advantages in terms of convergence. Neural networks are applied to the com-
binatorial optimization problem known as the "Hitchcock problem", and signal pro-
cessing problems, such as matrix inversion, and Fourier transformation . The concept
of programming complexity is introduced. It is shown that for some computational
problems, the programming complexity may be so great as to limit the utility of neural
networks, while for others the investment of computation in programming the network

is justified. Simulations of neural networks using a digital computer are presented.
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1. Introduction

Even the fastest modern computer cannot compare with the brain of an infant in
the performance of intelligent information processing such as image processing and
pattern recognition. This well quoted fact suggests the possibility of a quite different
type of computer. The fundamental difficulty in creating artificial intelligence on con-
ventional digital computers comes from the large difference in architectures of infor-
mation processing between digital computers and human brains, ie., the sequential
processing in von Neumann machines and the massively parallel computation in
human brainsl. Neuroscientists have revealed that the massive parallelism and the
computational richness in the human brain lie in the global and dense interconnecctions
among a large number of identical logic elements or neurons which are connected to
each other with variable strengths by a network of synapsesz. An artificial neural net-
work system that can perform parallel computation and the function of natural intelli-

gence is extremely attractive as a future-generation computer.

However, there exist two major problems that must be attacked before the realiza-
tion of such a neural computer. The first is a hardware problem of how to implement
those global and dense interconnections among many neuron-like logic elements, and
the second is a software problem of how to program such highly parallel computation
on a ncural network system. We may take two different approaches to the first prob-
lem, VLSI-based interconnections and optical interconaections-. Neurons in the
human brain are interconnccted in three-dimensional space since it is the most natural
and efficient way of interconnection, but VLSI-based interconnections are inherently
two-dimensional in nature. Optical signals, on the other hand, can flow through three-
dimensional space to achieve the required interconnects between neuron-like logic ele-

ments.  Based on this idea, severai schemes of optical computing have been
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proposed4'7. Among them, Psaltis and Farhat4’7 recently reported an optical imple-
mentation of the Hopfield neural network®? using an optical vector-matrix multi-

0

plicrI as a programmable interconnector, and demonstrated the feasibility of optical

content addressable associative memory.

Extensive studies have been done on the basic characteristics of the neural net-
works thcmselvesll, but the second problem of hov to program them to do various
computations of practical interest has not been fully studied except in their application

3 showed that a certain

to associative mcmorylz. Quite recently, Hopfield and Tankl
class of optimization problems can be programmed and solved on their neural network
modcl. They demonstrated the computational power and speed of their neural network
by solving one of the NP-complete problcms14 known as the "Traveling-Salesman
problem.” The purpose of this paper is to extend their idea and explore new possibili-
ties of programming and solving on neural networks other various non-biological prob-
lems of practical interest. We emphasize that our goal is not to propose mechanisms
that might actually be utilized by the brain, but rather to apply neural network ideas to

computational problems, and thereby to open some new avenues for realizing powerful

man-made computers.

We first review briefly the Hopfield neural network model, and describe some
minor modifications. Next, we propose a new scheme to represent numbers by neuron
state variables, which is essential in solving numerical problems on neural networks.
Based on this number representation scheme, we show how we can program and solve

. . o 15 , 16
combinatorial optimization problems ~ known as network flow problems = or more

specifically as the "Hitchcock problem,"17

and simulate 1ts computational performance
on a digital computer. Then, we give a programming scheme to perform signal pro-

cessing for signal recovery, such as the computations of matrix inversion and Fourier
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transformation. The performance is again simulated on a digital computer.

The important idea of programming complexity is then introduced, and it is
shown that for some problems the data-dependent programming complexity is so great
that computations invested in finding the right neural interconnection and bias patterns
may equal the complexity involved in solving the problem directly without a ncural
network. For such problems, neural networks, as we now understand them, may not

be an appropriate architecture for computational problem-solving.

We conclude with the discussion of the limitations and the problems that remain

to be solved in future.
I1. The Hopficld Model and Its Modifications

A. The Hopfield model

The Hopficeld modcl&9 consists of a number of mutually interconnected nonlinear
devices called "neurons” whose states are characterized by their outputs V; (which may
take values between 0 and 1). The dynamics of neurons in the Hopfield model can be

described in both discrete and continuous spaces.
The discrete model is illustrated in Fig.1. At fan-in terminals Z, each neuron i
receives inputs 7,;V; from other neurons j and a bias input /; associated with itself;
N
Ui:ZTiij+li’ (1)
J=1
where N is the number of neurons, and Tij are elements of an interconnection matrix
representing the strengths of connections. At discrete times, switches SW; turn on, and
the inputs U; are fed back to corresponding neurons to change their states or to leave

their states fixed according to a threshold rule determined by nonlinear operators NLR,,

such that
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Vik+1) = stp[ U;(k) ], )

where k is discrete time, and stp(x) is a unit step function which is 1 for x>0, and O
for x<0. Thus, neurons take binary values either 1 or 0, and the binary outputs are sent
out from fan-out terminals Q; and distributed through the interconnection network to

re-generate new inputs at the fan-in terminals X,

In the continuous model, neurons change their states according to the following

equations of dynamics:

N

dU"/dl = ZTUV] + Ii (3)
j=1

V,' = g( U,‘ )s €Y

where ¢ is continuous time, and g(x) is a nonlinear function whose form can be taken

to be
gx) = (1/2)[ 1 + tanh(x/xp) ], (5)
which approaches a unit step function as xg tends to zero.

Hopﬁeld9 has shown that if T,-Jr- ji » neurons in the continuous model always

change their states in such a manner that they minimize an encrgy function defined by
N N N
E=~(112)3, 3 T,VV, - 21V, (6)
i=] j=1 i=1

and stop at minima of this function. The same is also truc8 for ncurons in the discrete

model if we further assume that T;,=0.

B. Neuron transition modes

We adopt the discrete-time model because it is much easier to simulate on a digi-
tal computer. But when 7,20, the model sometimes shows an oscillatory behavior or
keeps wandering around the state space near the minima of the energy function. Most

problems of practical interest require self feedbacks (7;;#0) when programmed on a
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ncural network. We therefore need to design transition modes that reduce such
phenomena. Without claiming any similarity to natural neuron transition rules, we

choose four different discrete-time transition modes for examination.

(a) Dircct synchronous transition mode

All the transitions occur simultaneously when the switches SW; turn on in syn-
chronism at discrete times 4. The fan-in inputs are directly fed back to generate new
neuron states. A continuous nonlinear function g(x) allows neurons to take state

values between 0 and 1. The following equations are assumed to hold:
N
Uk)y = ZT,»}-V.(L-) +1/; )
=l

Vitk+1) = gl Uik 1. (8)

(b) Differential synchronous transition mode

The differential equations in the continuous model are approximated by difference

cquations. Transitions occur synchronously. In this case,

N
Uik) = Uk=1) = 3T, V,(k) + I; 9
=

Vitk+1) = gl Uik) 1.
This mode requires one memory cell for each neuron to keep its previous input.
(¢) Direct asynchronous transition mode (random delays)

This mode is similar to mode (a), but the switches SW; turn on and off asynchro-

nously, i.e. with random delays. In this case,

N
U‘(k - AI") = Z TU ‘/j(k - At“) + I‘- (10)
1

where Ar; are skews caused by time delays in the network, and are fractions of onc
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clock time, while € is a small positive constant. Without loss of generality we can
assume

At SALSLLSAL,
because the numbering of neurons is arbitrary. In this mode, one particular neuron !
need not wait for the last neuron N for synchronization, and when it decides its new
state, it can make use of information about new states of other ncurons that have

alrcady renewed their states.

(<) Differential asynchronous transition mode (random delays)

This is an asynchronous version of mode (b). In this case,

N
Uik = Ar) = Uk = Me=1) = 3, TyVitk = Ar) + 1, (11)
=l

Vitk — Are) = g[Uitk = Ar) — Utk — A1)

Using simulations on a digital computer, we found that the synchronous transition
modes (a) and (b) gave risc to large oscillations in the energy function when 7,20, but
that the asynchronous transition modes (c) and (d) have greatly reduced oscillatory or
wandering behavior, though the reduction is not complete. While mode (c) is quicker
in minimizing the energy function, mode (d) has more reduced oscillations. Depending
on the characteristics of the problems of interest, we shall make a proper choice of a

mode from (c) and (d).

I11. Number Representation Schemes

In most problems of practical interest, solutions are described by a set of
numbers. Thercfore we must have a means to encodc numbers on neuron state vari-
ables V.. While allowing neurons to take continuous state values during the process of

encrgy function minimization, we demand that they take binary values of 1 or O at the
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final stage so that we can obtain digital solutions like those given by digital computers.
TFor simplicity, we first assume the numbers are positive integers including O, though
we can also represent general bipolar and complex numbers by using additional neu-
rons. We consider three different ways of mapping the positive integer space Z* onto

the neuron state space V.

A. Binary scheme

A common way of representing numbers in digital computers is to use binary
digits. For example, 5 is expressed by 0101. This scheme uses log,(N+1) bits to
express a number N. If we let one neuron represent one bit, we have a one-to-one
correspondence between elements in the number space Z* and those in the neuron state
space V. Despite the economy in the number of bits or neurons used, a system based
on the binary scheme is not fault-tolerant. In other words, even a single failurc in a

highly significant bit gives rise to a large error in the number represented.

B. Simple-sum scheme

In this scheme, a number is represented by a simple sum of the ncuron state vari-
ables V;, i.e., the total number of firing (V;=1) neurons. For example, 5 is expressed by
0011111, 0101111, 1101011, etc., all of which have five 1-bits. This is a one-to-many
mapping from Z* to V, and the numbers have degenerate representations. This scheme
requires N bits to express a number &, and is not economical in the number of bits or
neurons. However, it is highly fault-tolerant because an error in a single bit docs not
cause a large error in the number represented. The fault-tolerance of the human brain

. . . . 11
is belicved to come from this type of averaging over a large number of neurons

So far, we huave compared the binary scheme and the simple-sum scheme from

the viewpoint of their fault-tolerance. More important is their difference in problem-
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solving capability. As will be scen later, problems are solved through a spontancous
energy minimization process in a neural network, and the solution is given by a point
in the neuron state-variable space that is reached after this minimization process. In
the binary scheme, there is only one point in the state variable space that gives a
correct solution. In the simple-sum scheme, on the other hand, multiple points give the
correct solution. Because of this degeneracy and the clustering of quasi-minimum
encrgy points in the neuron state-variable space, the simple-sum scheme offers more
chances to reach the correct solution. Suppose, for example, 3 is the correct solution.
In the simple-sum scheme, we can get a correct solution when the final state is either
00111, 10110, 11100, or 10101, etc., whereas we can get the correct solution in the
binary scheme only when the final state is 00011. Simulation results reported later in

this paper support the hypothesized superiority of the simple-sum scheme.

C. Group-and-wcight scheme

Despite its merit in fault-tolerance and computational capability, the simple-sum
scheme requires too many neurons when solutions include large numbers. We proposc
the group-and-weight scheme which lics between the binary and the simple-sum
schemes. In this scheme, we divide the total ¢ bits into K groups each of which has M
bits ((’/‘zKA\l), and interpret the groups as digits whose numbers are given by simple
sums of the bits in the corresponding groups. For example, with ¢g=6, K=2, M=3, 5 is
expressed either by 100 100 (4'x(140+0) + 4% [140+0) = 5), 010 001, 001 010, or

100 001 etc. A number expression for the simple-sum scheme is given by

K M
E“MH)k"’Z"u-n.wn]- (12)
i i=1

This expression includes the binary and the simple-sum schemes as special cases.

When we put M=1 and K=¢, we obtain a number expression for the binary scheme

- - .

N o iem
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q
2y (13)
k=1
and when we put M=g and K=1, we obtuin a number expression for the simple-sum

scheme

q
PAYE (14
i=1
The group-and-weight scheme requires A logy,,;(N+1) bits to express a number N.
This also gives the number of bits required in the binary scheme when we put M=l

and that required in the simple-sum scheme when we put M=N,

D. Bipolar and Complex Integers

So far, we have restricted our number representations to positive integers, but
they can easily be extended to include bipolar and complex intcgers. A bipolar
expression can be obtained simply by adding a negative bias integer to the expression

for positive integers given by Eq. (12):

k=1 =1

K M
Z[(“H)k“]Zv(k—l)m,} - [(1/2)[(M+1)K - 1“ (15)

where (1/2)[(.1I+1)K - 1] is half the largest positive integer that can be expressed by
Eq. (12), and the floor operation Ix] gives the nearest integer value less than x. Eq.
(15) can express bipolur integers ranging over i[(1/2) [(M+1)K—1n.

To express complex integers, we need twice as many neurons, i.e., neurons \’SR)

and V1) that represent real and imaginary parts, respectively. Complex integers arc

expressed by

K M .
z{(Am)""Z\K’*)(k_,)ﬁ,,,} - [(]/2)[(M+1)" - 1” (16)
k=1 =1
K M .
+ j{z [(Mn)“‘}:H’)(k_])_‘,”] - [(1/2)[(/\1+1)" - 1”}
=1 i=1
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where j2 = -1,

E. General Real and Complex Numbers

We can also express numbers with fractional digits, e.g. 13.26, 3.14, etc., by

using more neurons and labeling them with negative subscripts (i<0), e.g. V.

7
s Vo
ctc., so that the parameter & in the first summation in Eq. (12) can run from a negative

integer —K’; the number representation becomes

K M
h (M+1)’“—‘2v(k_1w+,. i (17)
k=-K" i=1

Equation (17) can express numbers ranging from 0 to M+DK — M+1)" KD with a
minimum digit of quantization being (M+1)" KD Just as we did in subsection D, we
can casily modify Eq. (17) to a form similar to Eq. (16), so that it can express general
complex numbers. Again here, the group-and-weight scheme includes the binary and
simple-sum schemes as special cases. If we put M=1 and K=q, Eqs. (15), (106), and
(17) give the expressions for the binary scheme. Likewise, the expressions for the
simple-sum scheme can be obtained by substituting M=¢ and K=1 into Eqgs. (15) and

(16), and M=q and K=-K" into Eq. (17).

Finally, it should be noted that the number representation schemes we proposed
here are all based on linear mapping of the number space onto the neuron state space.
In other words, numbers are represented by lincar combinations of neuron state vari-
ables. This is an important point in designing number representation schemes for the
Hopficld ncural network, since the energy function Eq. (6) has a quadratic form with
respect to neuron state variables.  Other nonlincar mapping schemes, like floating point
expressions, cannot form the energy function required by the Hopfield model, because
the floating-point expressions nced to have neuron state variables in exponents. This

certainly limits the possibility of covering a wide range of numbers using a small
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number of neurons, but for a neural computer it is not a fatal disadvantage because the
use of ample neurons with much redundancy is the key to improving its computational

capability and system stability.

IV. The Hitchcock Problem

Based on the number representation schemes described in the previous section,
we show how a combinatorial optimization problem known as the Hitchcock prob-

17

lem" " can be programmed and solved on a neural network.

Suppose there are m sources (X=1, . .., X=m) for a commodity, with Sy units of
supply at X, and n sinks (Y=1, ... ,Y=n) for the commodity, with a demand Dy at Y,
as shown in Fig. 2. If Cyy is the unit cost of shipment from X to Y. the Hitchcock

problem is to find a flow fyy that satisfies demands for supplies and simultancously

minimizes flow cost. Thus the problem is to minimize

m n
2 2. Cxy fxys (18)
X=1 Y=1
under the constraints
n
> ey = Sx X=12,...,m), (19)
Y=1
and
m
Y fxy = Dy (Y=1,2, ... ,n). 20)
X=1

In Table 1, (a) is an example of a unit cost table, and (b) is an cxample of a solution
represented in the form of a flow matrix or a transportation matrix. The flow matrix
describes, for example, that from the source at X=2, two units of the commodity

should be sent to the demand at Y=1, and one unit to the demand at Y=2.
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A. Flow Matrix Representation

Table 2 shows how the flow matrix can be represented by ncurons. We assign q
neurons to each matrix element to represent its content fyy, so that we use N=gmn neu-
rons in total for the complete representation of the flow matrix. For the convenience
of mathematical treatment, we specify each neuron by a set of three subscripts Vyy,
where XY specifies the matrix element the neuron belongs to, and i specifies the posi-
tion of the neuron in that matrix element. Since the group-and-weight number
representation scheme includes the binary and simple sum schemes as special cases,
we express the flow matrix elements fyy by the group-and-weight scheme:

K M
fxy = 2| MDY Viy s (21)
=l vt

B. Energy Function

We use the spontaneous energy minimization process of a neuron network to
solve optimization problems. Since the energy function defined by Eq. (6) has a qua-
dratic form with respect to neuron state variables V;, we find a quadratic function of
Vxy; such that the minimization of the function corresponds to minimizing the flow

cost and minimizing violations of the constraints. An energy function that satisfies

such requirements is given by

m n K M 2
E=-(A)Y ¥ ¥ ¥ (M+1)¥ ‘[ - zvxy,(k_l).w] (22)
X=1 Y=1 k=1 i=1
m n K M 2
+BDY S T M+ Wy iy

x=1| = r=1 k=l =1
n m K M 2
HCD I DY T M+t Wy e 1ysi
Y=1 X=1 k=1 i=l
m n K M 2
HDID[Y T Y ECxM+ Wy gy
X=1 Y=1 k=i i=1

where A, B, C, and D are positive weight factors. The first term weighted by A is
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introduced for the binarization of the neuron state variables Vyy;, i.e. Vyy; =1 or 0.
Because the function F(V) = —(1—2W2, (0<V<1) takes minimum values at V=0 and
V=1, minimizing this term assures that the final solution is given by binary numbers.
The second term, weighted by B, is introduced to minimize violations of the source
constraints given by Eq. (19). Likewise, through minimization of the third term with a
weight C, we can satisfy the demand constraints given by Eq. (20). The last term,
weighted by D, is for minimization of the total flow cost. The total cost is squared in
Eq. (22), but we may also introduce it without squaring, because the cost is always
positive. Note that the way we define the energy function is not unique, so that we
can solve the same problem by using different programs on the neural network, just as

is often the case in solving problems on conventional digital computers.

Considering the various terms represented in Eq. (22), it can be seen that solu-
tions with low energy do not necessarily correspond to solutions with low cost. How-
ever, if the weighting constants are properly chosen, then the binarization, source and
demand constraints will eventually all be perfectly satisfied, resulting in a one-to-one
relation between energy and cost. Thus eventually low energy solutions will

correspond to low cost solutions.

C. Int’érconllcction Matrix

By analogy with digital computers, if we regard the expression for the energ
function Eq. (22) as a source program, then the next step is to compile or map it onto
the interconnection strengths T; of the neural network. This can be done by compar-

ing Eq. (22) with the encrgy function Eq. (6), which is now written as

m an K M m an K M .
E=-(112)Y T XX X X X ZTara-nwsi xro-nmee Varg-nss Vera-nse
X=1 ¥=1 k=l i=] XK'=t Y=l K=l o=l
m n K M
Z E z ZVXY.(k—I)WH' IXY,(k—l).“ﬂ' (23)
X=1 ¥=1 k=l =l
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where Txy g )iy (w-naw denotes the strength of the interconnection between the
ncuron at the [(k—l)M+i]th position in the flow matrix element at XY, and the ncuron
at the [(k'—l)M+i’]th position in the flow matrix element at X'Y". By equating the
corresponding coefficients of the two quadratic equations (22) and (23), we can dcter-
mine the interconnection strengths and the biases:

Txy ge-1ypsi; Xv,k-Dieir = SAMEDT810.8,1.8,,:8, @4
= B(M+ 1828y, = C(M+1)M*=28 1 — D(M+1)M¥=2C3, Copoyr,

and
Ixy g-typsi = “2AM+ D)1 4+ BOM+1)EISy + CM+1)% 1Dy, (25)

where 8, is a Kroncker delta defined by

8§ =41 (Z=2")

ZZZ7010 (Z#Z)
In Eq. (24), the first term describes self-fecedbacks, the second and third terms
represent local interconnections between neurons in the same row (X'=X) and in the
same column (Y’=Y), respectively. The last term describes the global interconncctions

between all neurons. If we put M=1 and K=q, we obtain the interconnection strengths

and the biases for the binary number representation scheme:

Txyi xvx = 4428 8y 8yy 810 (26)
- sz+L’—28XX’_ C2k+V—25W - Dzk”(_zCXYCX'Y"
and

Ixyp = —A2%B2515+C2% 1Dy, 7

Likewise, the intcrconnection strengths and the biases for the simple-sum scheme can

be obtained by putting M=q and K=1:

Txyixy,p = 4Adxxdyyd; — Bdyy — Cdyy — DCxyCyxry, (28)
and
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Ixy"’ = "2A+BSX+CD}'. (29)

D. Numerical Experiments

To examine the computational performance of a neural network, we simulated
statc transitions of neurons by using a digital computer. We used the unit costs and
the source and demand constraints listed in Table 1. Based on these data, we deter-
mined the interconnection strengths and the biases. Since at present we have no sys-
tematic methods for finding the best combination of the weighting factors A, B, C, and
D, they were found empirically through the observation of several experimental results.
The lack of a systematic method for finding the weighting factors should not be too
disturbing. Such a situation is commonly encountered in solving multiple-target op-
timization problems (on a conventional digital computer), such as lens design problems
and color matching problems. However, it should be emphasized that the ability to
obtain a good solution depends strongly on making good choices for A, B, C, and D.
Throughout the experiments with the Hitchcock problem, we used the direct asynchro-

nous transition mode and the nonlinear function given by Eq. (5) with 0.1<x,<1.

Figure 3 shows an example of the reduction of energy performed by a network
with N=60 neurons that represent the flow matrix based on the binary number
representation  scheme  (N=gmn=3x4x5=60, M=1, K=3). Table 3 shows the flow
matrices obtained at several points on the curve of Fig. 3. The weight factors were
chosen as A=27, B=C=80, and D=0.2. Since we have no a priori knowledge about the
solution, uniformly distributed random numbers between U and 1 were gencrated and
assigned to the initial states of the neurons. Starting from a very high encrgy state, the
ncural network reduced its energy spontancously by changing its state so that the flow
matrix could satisfy the constraints while minimizing the total cost. After six itera-

tions, we reached feasible solutions (marked by open circles) that satisfied all the
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constraints and gave 40 as the total cost.

After arriving at a solution using the neural network, it is important to develop
some understanding of how good that solution might be. To achicve this end, one
could enumerate all the feasible solutions that satisfy the constraints, and from this sct
determine the best solution. However, since it is very hard to enumerate all the solu-
tions of under-determined simultaneous integer equations, Egs. (19) and (20) (which
belong to a family of Diophantine equations), we used a Monte Carlo method and
found 50,000 feasible solutions. (Note that this calculation was performed simply to
check how well the neural network had performed.) Figure 4 shows a cost histogram
of the feasible solutions found. The solution with cost 40 is found to be one of the
very good solutions, which would be reached only with a probability of 6x107> if we
scarched randomly among the feasible solutions. Yet it is still not the best solution,
which was confirmed to be 38 by using a stepping stone algorithm. Figure 5 and
Tuble 4 show another example, for which we assigned 0.5 to the initial states of all
neurons, so that they started evolving from the fuzziest states. In this example, we
reached a feasible solution with cost 49 at the seventh iteration, but we could not reach
any other feasible solutions by further iterations. The oscillatory behavior of the
energy function arises from using a discrete model with self-feedback. The solution
with cost 49 is fairly good but not as good as in the previous example. Experiments
performed with different initial values and/or weight factors gave solutions most fre-
quently with costs around 50, and could not pick up the best solution. In worst cases,
no fcasible solution could be reached. These results are indicative of the limitations of
the problem-solving capability of the binary number representation scheme. As we
now show, much better results can be obtained with a degenerate number representa-

tion scheme.
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To examine the problem-solving capability of the degenerate number representa-
tion schemes, we programmed the same problem on a 140-neuron network using the
simple-sum scheme (N =gqmn = 7x4x5 = 140, M=7, K=1). Figures 6 and 7 and
Tables 5 and 6 show the computational performance of the 140-ncuron network with
its initial states all set equal to 0.5, the fuzziest states. Weight factors were chosen to
be A=29, B=80, C=80, and D=0.55. Through the first several iterations, the source and
demand constraints came to be almost satisfied (see Fig. 6 and Table S5), and at the
sixth iteration the first feasible solution, with cost 43, was reached (sce Fig. 7 and
Table 6). The solution was improved further by continuing iterations, passing another
feasible solution with cost 40 at the tenth iteration, the best solution with cost 38 was
finally reached on the twenty-first iteration. To show the role played by the degen-
cracy of the number representation, the complete states of the 140 neurons are depicted
in Fig. 8 for the iterations from No. 21 through No. 28. Each neuron is represented by
a star when it is firing (Vyy; = 1) and by a dot when not firing (Vyy; =0). The
number of ncurons that are firing in each set of seven ncurons represents the content of
the flow matrix element fyy at the corresponding position. At iteration No. 21, for
example, we had f,5=1 because only one neuron V53 was firing (V,54=1) and the rest
of the six neurons were not firing. At iteration No. 22, neuron Vs 3 stopped firing, but
the correct solution fs=1 was retained because the next neighbor neuron Vs 5 started
firing, instead of V,53. We can observe a similar phenomenon in other sets of ncurons
representing fys and fys at iterations No. 21, 22, 23, 25, 26, and 27. In this manner,
the ncural network can give correct solutions at many different points in its state
space, and these points cluster in a particular region of the state space that corresponds
to low cnergy function values. It is because of this characteristic that the degencrate

number representation scheme can have better problem-solving capabilities than the
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pure binary number representation scheme.

Figure 9 and Table 7 show another example of the computational performance of
the 140-neuron network, where uniform random numbers between O and 1 were
assigned to the initial state variables of the neurons. In this example, we obtained two

different solutions with cost 38, showing that the best solution is not unique.

V. Simultanecous Equations

In this section we show how we can program and solve on a neural network

simultaneous cquations
Hx =y (30)

where II is a full-rank square matrix with NxN elements, and x and y are vectors with
N elements representing, respectively, unknown and given variables. (Note that decon-

volution is a special case of this general problem.)

A. Encrgy Function

In order to use the spontaneous energy-minimization process of the necural net-
work, we reformulate the problem in the form of a minimization problem by introduc-

ing an energy function that includes a term
lly = Hx|?, (31)

so that the norm of the difference can be minimized through the energy minimization
process. For our later demonstration of the Fourier transformation, we allow y and 1
to take on complex values, but, for the sake of simplicity, we restrict x to only positive
integer values, although we could include complex numbers by using additional ncu-
rons labeled by a more complicated set of subscripts. As in Eq. (21), we express the

nth clement x, of the unknown vector X by the group-and-weight scheme:
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K M N

X, = 2 AEDTIEV ol (32)
= =1

By substituting Eq. (32) into Eq. (31), we have an energy function

n=l k=i

N K M 2 R
E=-AD% Y z M) [1—2\'m_1>m.] (33)
N

N N
+HBDY | - Zlug][ -y h,‘,‘rx,,']

=1 n’al

N XK M

=AY T T+t [1 =2V, - 1)u+.]
o g
N N K M .
+(BDY Y Z > E Z(V‘rl) K iV eenyiei Ve ge-iysee
- =t =
N N K .
-BY ¥ Z (~”+l)k_lRC[.ylhIn W gk-13M4i
El el k1 am)
i )
+ (BI2)Y v,
£l

where, as in Eq. (22), the first term is for binarization, y; and A, are elecments of y and

I, and * and Re[ ] denote complex conjugate and real part, respectively.

B. Interconnection Matrix

The energy function is now modified to

N KM N K M
E=-(112)3 3 3 3 ¥ X Tlng-tpteimw-iter Vageetprei Varonter (34)
=1 k=1 =1 a'=] k=1 =]
N K M
=3 2, 2 Va-tptei Dngeorypaeie
n=1 k=1 =1

By equating the corresponding coefficients of Eq. (33) and (34), we determine the

interconnectior. strengths and the biases:
’ N .
Toeysteim - = SAM+DE18,,8,.8,— BAM+ D2 iy b, (35)
=1

' N
Lne-npsi = —2AM+D + B(AI+1)""Rc[EIxm°y,]. (36)
=1

Equation (31) includes the discrete Fourier transform as a special case with

I, = exp[-2rj(1-1)(n—1)/N], 37

and the inverse transform is computed by solving the simultancous lincar equations.
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In this case, Eq. (35) takes a simple form due to the orthogonality of the Fourier
transform matrix:

T - Main (K=DMM = AAM+1)*718,,:8,,8 (3%)
—BN(M+1)k+K-25 ..

C. Numerical Experiments

Computations of the inverse Fourier transform were programmed on the neural
network and the performance was simulated on a digital computer. We used signals
with N=15 sample points. Each sample-point x, was expressed by 24 neurons based
on the simple-sum scheme (M=24, K=1), so that 360 neurons were employed in total.
We adopted the differential asynchronous transition mode, and chose weight factors as
A=28 and B=1. In Fig. 10, (a) and (b) show, respectively, an original signal x and its
Fourier transform y (only absolute values are shown in the figure). The task given to

the neural network is to compute X from a given y.

Assuming no a priori knowledge, we started from the fuzziest initial states
V,i = 0.5 shown in Fig. 10 (c) and got the result shown in Fig. 10 (d) after only two
iterations. Another example is shown in Fig. 11, where we used an asymmetric signal
and started from random initial states. Again after only two iterations we obtained the
result shown in Fig. 11 (d). Although the solutions obtained are not exact, the speed
of computation is impressive. In fact, this apparently enormous speed of computation

is quite misleading, for reasons that will be revealed later in the following section.

VI. Computational and Programming Complexitics

As has been demonstrated in Sections IV, and V, the computational speed of a
ncural network is very high, solutions (though not always exact) being obtained within

several clock times (iterations). At present, we do not know how the computation time

.
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(the number of iterations required) is related to the problem size (the number of neu-
rons employed) and to the algorithm (the choice of the interconnections). We conjec-
ture that the computation time does not grow too rapidly with problem size, because
the greater the problem size, the more neurons participate in solving the problem, and
the higher the parallelism used. If this conjecture is correct, the computation time is
very short for a properly programmed (interconnected) neural network, irrespective of
the problem size. It may appear, then, that neural networks would be the computation
architecture of choice in most problems that can be included within the energy minimi-
zation framework. However, this conclusion is not correct. Although the computation
time itself may be very short, it may be necessary to invest very significant computa-
tion time simply to program the network, i.e. to determine the proper intcrconnection
strengths and neural biases. The situation is somewhat analogous to the classical ana-
log electronic computer for which a large amount of time must be spent wiring the
proper modules together before any problem can be solved. Once the modules are

connected, a solution appears almost immediately.

A. Frogramming Complexity

By analogy with the concept of computational complexitym’ 5

in digital com-
puting‘,'wc introduce the concept of programming complexity in neural computing. We
define programming complexity as the number of arithmetic operations that must be
performed to determine the proper interconnection strengths and neural biases for the
problem to be solved. Conventional digital computers also need programming, but
once the program is compiled and stored in memory, it can be used on many different
scts of input data. For this reason, the concept of programming complexity has little

significance in the world of conventional digital computers, where programs are com-

pletely separable from data. In neural network computers, a program and data are
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generally mixed together and stored in the interconnection strengths and/or neural
biases. For example, in Eq. (24), the first three terms represent part of the program
(since they do not depend on data), and the last term, including the costs Cyy,
corresponds to the data. Therefore, we must redetermine the interconnection strengths
and/or the biases each time we usec new data. In such an environment, the program-
ming complexity becomes an important measure of the efficicncy of neural computing.
We know that it is not meaningful to compare the efficiencies of conventional digital
computers and neural computers on the basis of computational complexity and pro-
gramming complexity, because they mean different things. Digital computers always
give exact solutions (within the machine precision) after performing the number of
operations specificd by the computational complexity, whereas neural computers do not
guarantee exact solutions even if they are programmed by performing the number of
operations specified by the programming complexity. Nevertheless, a comparison of
the computational complexity and the programming complexity does reveal certain

interesting aspects of neural computing, as discussed in the following section.

e e S
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B. Simultancous Equations

To solve simultancous equations with N unknown variables, we emploved gN
neurons, with ¢ being the number of neurons used to represent cach unknown variable.
We consider ¢ to be a constant factor, since it does not depend on N. The number of
interconnections is given by (1/2)gN(gN+1)=O(N?), and the number of biases is
gN=0(N). We need O(N) operations to determine each interconnection strength (see
Eq. (35)), and each bias (see Eq. (36)), so that the programming complexity is O(N3).

14 This means that solu-

The computational complexity of this problem is also O(N3).
tions of such a problem on either a neural computer or a conventional digital computer
would require essentially the same computational load. In the case of the neural com-
puter, the computations must be expended to determine the interconnection stengths
and biases, while in the case of the conventional digital computer the computations are
expended on solving the problem itself,

This comparison is even more striking in the case of the Fourier transformation
discussed carlier. Since Eq. (38) contains no data terms, we need not recompute the

interconnection strengths for each different set of data. The programming complexity

N
comes only from computation of the term leln'yl in the biases, Eq. (36). Noting Eq.
I=1

(37), we find that to determine the proper biases, we must in fact compute the very
same inverse Fourier transform that the ncural network was to find! Thus we have
alrcady arrived at the solution by the time we finish programming, and it is now no
surprise the neural network supplies the answer in only two interations. The answer is

in fact pre-programmed into the machine!
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C. The Traveling-Salesman Problem

In the previous section we saw an example in which the programming complexity
of a ncural computer and the computational complexity on a conventional computer
arc of the same order. The question naturally arises as to whether this is the case with
all problems. If so, ncural computing loses most of its attractiveness. Hopficld and
Tank’s pnpcr13 on the traveling salesman problem provides the best example with
which to answer this question. The computational complexity of the traveling sales-
man problem is an exponential function, O(N'), of the number of cities N. Hopficld
and Tank showed that the problem can be programmed on a neural network with N?
neurons that represent the elements of a permutation matrix. We can show that the
programming complexity of this scheme is O(N%). This large difference of complexi-
ties makes neural computing very attractive, even though it does not guarantce the best

solution.

C. The Hitchcock Problem

Computational complexity in conventional digital computing depends greatly on
the algorithms used, so that a great effort has been made by computer scientists to
scek better algorithms and thereby reduce computational complexity. The same can be
true \\;'i‘zh programming complexity in neural computing. The Hitchcock problem pro-
vides a good example for demonstrating good and poor algorithms (ways of intcrcon-
nection) in terms of programming complexity. In Section 1V, the Hitchcock problem
with m sources and n demands was solved by using gmn=:O(mn) neurons. Since Eqgs.
(24) and (25) include data Cyy, Sy, and Dy, we have to redctermine
(1/2)(1mn(1+qmn)=0(mznz) interconnection strengths and gma=O(mn) biases for cach
new sect of data. Each interconnection strength and bias can be determined by a con-

stant number of operations, so that the programming complexity is given by
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O(m*n?) = O for m=n. In Section IV B, we suggested an alternative definition of
the energy function that does not square the total cost in the last term of Eq. (22). If
we use this new energy function, the interconnection strengths and biases become

Txy i v o-seis = A 8y Byy 848, (39)
— B+ 280y — CMH+1)MF 280,

Iy oiyppei = —2AG+ D+ BOIDISy + CM+1) Dy (40
- (12)D(M+1)*1Cyy.

Now the interconnection strengths do not depend on the data Cyy, and they need not
be re-dectermined for each new set of data, so that the programming complexity comes
only from the biases, Eq. (40), and is given by O(mn)=0(n*) for m=n. This is a very
significant improvement. The computational complexity of the Hitchcock problem
depends on the algorithm used by a conventional digital computer. If we search for
the best solution randomly among all the possible combinations of the neural states, it

becomes 29™'=0(2™*). Even if we restrict the search to feasible solutions, it can still
be exponential O(n™ 1™ 1) 18. Of course, these algorithms are worst extremes, and
there exist several good algorithms that are in practical use. We do not know exactly
what is the computational complexity of the best existing algorithm for the Hitchcock
probler, but we estimate it to be a low-order polynomial. If it is still higher than

O(mn), then neural computing can have an advantage for this problem.

VII. Conclusion

Following the lead of Hopficld and Tank, we proposed an architecture for pro-
gramming highly parallel computation on neural networks. In Section 111, we described
number representation schemes based on linear mapping of the number space onto the

ncuron space, and pointed out the advantage of the degenerate number representation
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schemes. In Sections IV,and V, the validity of the architecture was demonstrated by
solving the Hitchcock problem and simultaneous linear equations on neural nctworks.
The dynamics of the neural network were simulated on a digital computer. In Scction
VI, we introduced the new concept of programming complexity in neural computing,
which was used to evaluate the computational efficiency of algorithms performed on
neural networks. We compared the programming complexity with the "worst case”
computational complexity, simply because the "average" complexity was tco hard to
estimate. However, we note that programming complexity is better compared with
"average” computational complexity, because they have a common characteristic that
the solution is not always best or exact, even if we perform the number of operations
specified by these complexities.

Finally we point out that there exists a fundamental limitation to the class of
problems that can be programmed and solved on the Hopficld ncural network. This
limitation comes from the requirement that the energy function must be a quadratic
function of the neuron state variables. All linear problems, such as discussed in this
paper, can satisfy this requirement. However, general nonlincar problems cannot
satisfy this requirement. Floating-point number representation is one such nonlinear

proble:m.
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Figure Captions

Neural network model.
The Hitchcock Problem, with 4 sources and 5 demands.

Neural dynamics for the Hitchcock problem, using a binary number representation
scheme. The initial states are randomly generated from a seed, and the transition
mode is direct asynchronous. The final transportation matrix gives a network
flow cost of 40. The constants in the energy function are chosen as A=27,
B=C=80, and D=0.2. The constant x; is 0.5. Sece Table 3 for the flow matrices at

the iteration numbers indicated by the arrows.
Flow cost histogram for the Hitchcock problem. The number of samples is SO0000.

Second example of the Hitchcock problem using a binary number representation
scheme. Uniformly fuzzy states initialized the network, and a "softer" non-lincar
function was used to give the best solution, with a flow cost of 49. The weights
used were A=27, B=C=80, D=0.2. The constant x; was 1.0. The opcn circle
represents a solution that satisfied the constraints. See Table 4 for flow matrices

at_the iteration numbers indicated by the arrows.

Network dynamics of the Hitchcock problem using a degenerate (simple sum)
number representation scheme. The constants used were A=29, B=C=80, D=0.55,
and x3=0.1. Open circles again represent solutions that satisfy the constraints.
Flow matrices corresponding to the arrows are found in Table 5.

Continuation of the degencrate network. One of the two-in-50.000 best solutions

is found at time 21. Open circles represent solutions that satisfy the constraints

(i.e. "consistent” solutions). The cost associated with the solution at the sixth




10.

11.
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iteration is 43, that associated with the group of consistent solutions starting at
iteration 10 is 40, and that associated with the remaining consistent solutions is
38. Sce Table 6 for the corresponding flow matrices.

Neural state transitions of the degenerate (simple sum) Hitchcock network (Figs.
6 and 7). lterations 21 through 28 are shown.

Secend example of the degenerate (simple sum) Hitchcock network. A random
initial state drove this network to find both of the best solutions. The two flow
matrices are shown in Table 7.

Inverse DFT. The transition mode is differential asynchronous. (a) Unknown
signal. (b) Known Fourier transform. (c) Uniformly fuzzy initial states. (d)
Estimated signal after 2 interations.

Inverse DFT, second example. (a) Unknown asymmetric signal. (b) Known

Fourier transform. (c) Random initial states. (d) Estimated signal after 2 iterations,

Table Captions

(a) Cost matrix for the Hitchcock problem. (b) Sample solution depicting the flow
from source X to demand Y.

Néural representation of the flow matrix for the Hitchcock network flow problem.
q ncurons are used to represent one element of the flow matrix.

Flow matrices for the specified numbers of iterations,corresponding to the points
indicated on Fig. 3.

Flow matrices for the specified numbers of iterations, corresponding to points

indicated on Fig. 5.

Flow matrices for the specified numbers of iterations, corresponding to the points

e . . — - —




indicated on Fig. 6.
Flow matrices for the specified numbers of iterations, corresponding to the points
indicated in Fig. 7.
Flow matrices for the specified numbers of iterations, corresponding to the points

indicated on Fig. 9.
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Figure Captions

Neural network model.
The Hitchcock Problem, with 4 sources and 5 demands.

Neural dynamics for the Hitchcock problem, using a binary number representation
scheme. The initial states are randomly generated from a seed, and the transition
mode is direct asynchronous. The final transportation matrix gives a nctwork
flow cost of 40. The constants in the energy function are chosen as A=27,
B=C=80, and D=0.2. The constant xq is 0.5. See Table 3 for the flow matrices at

the iteration numbers indicated by the arrows.
Flow cost histogram for the Hitchcock problem. The number of samples is 5000.

Second example of the Hitchcock problem using a binary number representation
scheme. Uniformly fuzzy states initialized the network, and a "softer" non-linear
function was used to give the best solution, with a flow cost of 49. The weights
used were A=27, B=C=80, D=0.2. The constant xq was 1.0. The open circle
represents a  solution that satisfied the constraints. See Table 4 for flow matrices

at_the iteration numbers indicated by the arrows.

Network dynamics of the Hitchcock problem using a degenerate (simple sum)
number representation scheme. The constants used were A=29, B=C=80, D=0.55,
and x¢=0.1. Open circles again represent solutions that satisfy the constraints.
Flow matrices corresponding to the arrows are found in Table 5.

Continuation of the degenerate network. One of the two-in-50,000 best solutions
is found at time 21. Open circles represent solutions that satisfy the constraints

(i.e. "consistent” solutions). The cost associated with the solution at the sixth
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iteration is 43, that associated with the group of consistent solutions starting at
iteration 10 is 40, and that associated with the remaining consistent solutions is
38. Sce Table 6 for the corresponding flow matrices.

Neural state transitions of the degenerate (simple sum) Hitchcock network (Figs.

6 and 7). Iterations 21 through 28 are shown.

Scecond example of the degenerate (simple sum) Hitchcock network. A random
initial state drove this network to find both of the best solutions. The two flow
matrices are shown in Table 7.

Inverse DFT. The transition mode is differential asynchronous. (a) Unknown
signal. (b) Known Fourier transform. (c¢) Uniformly fuzzy initial states. (d)
Estimated signal after 2 interations.

Inverse DFT, second example. (a) Unknown asymmetric signal. (b) Known

Fourier transform. (c¢) Random initial states. (d) Estimated signal after 2 iterations.

Table Captions

(a) Cost matrix for the Hitchcock problem. (b) Sample solution depicting the flow

from source X to demand Y.

Neural representation of the flow matrix for the Hitchcock network flow problem.

q neurons are used to represent one element of the flow matrix.

Flow matrices for the specified numbers of iterations,corresponding to the points

indicated on Fig. 3.

Flow matrices for the specified numbers of iterations, corresponding to points

indicated on Fig. 5.

Flow matrices for the specified numbers of iterations, corresponding to the points
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